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Abstract. The contribution of a ππ-exchange three-body force to the three-nucleon binding energy is
calculated in terms of a πN amplitude. The latter is based on a meson-theoretical model of πN interaction
developed by the Jülich group. Similar to a previous study based on simple phenomenological πN potentials
a very small effect of the resulting three-body force is found. Possible origins of the two-orders-of-magnitude
discrepancy between the present result and the values obtained for the Tucson-Melbourne three-body force
are investigated. Evidence is provided that this discrepancy is most likely due to strikingly different off-shell
properties of the πN amplitudes underlying the two approaches.

PACS. 21.10.Dr Binding energies and masses – 21.45.+v Few-body systems – 25.80.Dj Pion elastic
scattering

1 Introduction

Recently T.-Y. Saito and I. R. Afnan (SA) [1,2] have
calculated the contribution of a ππ-exchange three-body
force (see Fig. 1) to the three-nucleon binding energy in
terms of the πN amplitude using perturbation theory.
Their approach determines the contributions of the dif-
ferent πN partial waves and (via the division of the πN
amplitude into a pole and nonpole term) allows for a con-
sistent determination of the πNN form factor. The cal-
culations are based on phenomenological separable πN
potentials [3]. The total contribution of this three-body

Fig. 1. The contribution to the three-nucleon force

force (TBF) to the binding energy of the triton has been
found to be very small. It is typically of the order of a few
keV. This result falls short of calculations based on the
Tucson-Melbourne (TM) and the Brazilian ππ-exchange
three-nucleon potentials [4–6]. The latter potentials make
a contribution to the binding energy of the triton that is
of the order of the discrepancy between experiment and
calculations with realistic nucleon-nucleon potentials (i. e.
about 1 MeV).

The origin of this surprisingly large difference of two
orders of magnitude in the contribution of the three-body
force has been the topic of two subsequent very detailed
investigations by Saito and Afnan [2] and Murphy and
Coon [7]. SA concluded that the total contribution of the
TBF to the binding energy of the triton found in their
approach is so small as a result of the energy dependence
of the πN amplitudes, cancellations between the contri-
butions from the S- and P-wave πN partial waves, and
in particular, the soft πNN form factor. Indeed the form
factors extracted from their πN interaction models corre-
spond to monopole cutoff masses of around or even less
than 0.4 GeV - which have to be compared to values of
about 0.7 - 0.8 GeV suggested from other information [9–
11] and to the value of 0.8 GeV used in calculations with
the TM potential.

Murphy and Coon carried out a thorough comparison
of the πN amplitudes that underlie the TM TBF and the
calculations of SA [7]. They criticized that the amplitudes
used by SA do not fulfil the low-energy theorems of the
πN interaction as imposed by chiral symmetry. But still
they attested that these amplitudes are qualitatively simi-
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lar to the one used in the TM potential. The prime reason
for the two-orders-of-magnitude discrepancy found in the
contributions of the TBF was suspected to be likewise the
soft πNN form factor emerging from the phenomenologi-
cal separable πN interactions employed by SA.

In the present paper we want to re-investigate the ori-
gin of this large discrepancy in the predicted contribution
of the TBF. We follow the same approach as SA. How-
ever, we start out from a meson-theoretical πN model
developed recently by the Jülich group [12]. This model,
besides being conceptionally much better founded than
the simple separable potentials employed in [1,2], has the
important advantage that it does not exhibit those de-
ficiencies which led to a criticism on the work by Saito
and Afnan. Firstly, the Jülich model is in agreement with
empirical information on the πN amplitude in the sub-
threshold region [13]. In particular its prediction for the
amplitude at the so-called Cheng-Dashen point is close
to the empirical value. Second, and most importantly it
yields πNN form factors which are comparable to those of
the TM potential, with monopole cutoff masses of around
0.7 GeV [14]. Therefore this model provides an ideal start-
ing point for re-assessing the role of the ππ-exchange TBF
in the binding of the three-nucleon system.

The paper is structured in the following way: In Sect.
2 we review the salient features of the Jülich πN model. In
particular we concentrate on those properties that are rel-
evant for the present study. The specific structure of our
three-nucleon code makes it necessary to represent the
meson-theoretical πN amplitude in separable form. For
this purpose we applied the so-called EST method [15]
which allows to generate separable representations that
agree exactly (on- and half-off-shell) with the original in-
teraction at specific predetermined energies. This method
is briefly described also in Sect. 2. Furthermore, we discuss
the reliability of the separable representation by compar-
ing (off-shell) amplitudes obtained from it to the ones of
the original Jülich model for various πN partial waves.

The formulation of the TBF is given in Sect. 3 together
with a short outline of the formalism. Results for the con-
tribution of the ππ-exchange TBF to the triton binding
energy, based on the πN amplitude of the Jülich model
are presented in Sect. 4. Anticipating our results we find
again that the TBF is very small. Therefore, in Sect. 5,
we embark on a detailed discussion of the πN amplitudes
on which the TM TBF and our calculation are based.
We focus specifically on the off-shell properties of these
amplitudes since they are determined quite differently in
the two approaches. Indeed, we will argue that much of
the observed two-orders-of-magnitude discrepancy in the
binding energy is due to off-shell effects and we will present
numerical evidence for this conjecture. Finally, a summary
is given in Sect. 6.

2 The πN interaction

The πN models employed in the present investigation are
based on meson exchange and have been developed by

Fig. 2. Diagrams included in the πN potential

the Jülich Group [12]. They include the s-channel and u-
channel nucleon and delta-isobar pole diagrams together
with correlated ππ exchange in the JP = 0+ (σ) and 1−
(ρ) channels as shown in Fig. 2. The interaction potentials
are derived in time ordered perturbation theory and then
unitarized by means of a relativistic (Lippmann-Schwinger
type) scattering equation

T = V + V G0T . (1)

The resulting models account for the scattering data in the
elastic region as well as for the low-energy parameters [12].
Furthermore they also satisfy chiral symmetry constraints.
In particular, the resulting values for the so-called πN Σ
term (the contribution of the isoscalar forward scattering
amplitude at the Cheng-Dashen point) - Σ = 66.4 (65.6)
MeV for model 1 (2) of [12] - are in good agreement with
the empirical value of Σ = 60 MeV [16].

Since in the discussion of Murphy and Coon [7] special
attention was given to the subthreshold behaviour of the
πN amplitudes, we want to present here the correspond-
ing results for the Jülich πN model. In the continuation of
the T-matrix for the potential models to the subthreshold
region, we follow the procedure outlined in section 4 of [7].
We calculated the (on-shell) background isoscalar ampli-
tude F̄+(ν, t) (conventionally called D̄+; for definition see,
e.g., [7,8]) from the subthreshold point ν = 0, t = 0 to the
Cheng-Dashen point (ν = 0, t = 2m2

π). The predictions of
the Jülich models 1 and 2 are shown in Fig. 3 in compari-
son to the ones of the πN amplitudes that form the basis
of the TM and Brazil ππ-exchange TBF. One can see that
the results of the meson-exchange models more or less co-
incide with the πN amplitude employed in the TM TBF.
Furthermore, they are also in rather nice agreement with
the empirical subthreshold amplitude given by Höhler [8].

In a recent paper C. Schütz et al. [14] have determined
the πNN vertex functions resulting from the models of
[12] (cf. [14] and the Appendix for definitions and rele-
vant formulue). From the vertex functions at the nucleon
pole, the decrease in the πNN form factors FπNN (p2)
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Fig. 3. Comparison of the background isoscalar πN ampli-
tude F̄+(0, t). The solid (long-dashed) lines are obtained from
the Jülich πN model 1 (2) of [12]. The dash-dotted (short-
dashed) lines are the predictions of the amplitudes that form
the basis of the Tucson-Melbourne (Brazil) ππ-exchange three-
body force. Empirical values at the Cheng-Dashen (CD) point,
t = m2

π and t = 0 are taken from [8]

from the pion pole p2 = m2
π to p2 = 0, has been ex-

tracted following the procedure proposed by Mizutani et
al. [17]. This quantity is a measure for the softness of the
πNN form factor. It has been found that the πNN form
factors implied by the models considered in [14] are, in
general, significantly harder than the ones used by SA in
their study of the contribution of the ππ-exchange three-
nucleon force to the 3N binding energy. In particular, the
model 2’ of [14] yields a decrease in the form factor from
the pion pole to p2 = 0 of slightly less then 4% - which
is quite close to the value of 3% implied by the form fac-
tor introduced in the TM three-nucleon force and also in
good agreement with a recent lattice QCD calculation [9]
and other independent information [10,11]. Accordingly,
the major concern raised by Murphy and Coon against
the work of SA does not apply for this model and there-
fore it provides an excellent starting point for re-analyzing
the contributions of the ππ-exchange three-nucleon force
to the 3N binding energy in the approach of Saito and
Afnan.

In this work we will also present results for the other
models considered in [14] and it is appropriate to say some
words about the basic differences between these models.
All the models are based on the same dynamical input (cf.
Fig. 2). They differ, however, in the (phenomenological)
parametrization of the (bare) vertex form factors. Details
and explicit formulae can be found in Sect. 3 of [12]. Both

models provide a similarly good description of the πN
scattering data. However, the differences in the parame-
trization of the vertex form factors lead to different vertex
functions and in turn to different (dressed) πNN form fac-
tors.

Two further models (1’ and 2’) have been presented in
[14] for the following reason: The models 1 and 2 are con-
structed by assuming πNN pseudovector (pv) coupling.
However, the πNN form factor derived from lattice QCD
calculations [9], and the values of FπNN (0) from other in-
dependent information [10,11] (and also the values given
for the models used by SA), are based on pseudoscalar (ps)
coupling. In order to allow for a meaningful comparison
for the different couplings the authors of [14] have con-
structed variants of models 1 and 2 (labelled 1’ and 2’)
where ps coupling is used in the nucleon s-channel pole
term, cf. Fig. 2(a).

Values for FπNN (0) for the various models are com-
piled in Table 1. (Note that FπNN is normalized to
FπNN (m2

π) = 1.) For the ease of comparison we also in-
clude here the result for the separable πN model PJ by
McLeod and Afnan [3] which has been used (amongst oth-
ers) in the investigation by SA and on which most of the
concerns and criticism of Murphy and Coon are based.
It is evident that for this model the decrease of the form
factor from the pion pole to p2 = 0 is much larger - al-
most 20%. We want to emphasize here, however, that it is
the πNN vertex function which enters into the calculation
of the TBF and not the form factor (cf. Sect. 3). There-
fore we also show this quantity (cf. Fig. 4). Note that the
πNN vertex functions for models 1 and 1’ are practically
the same. Accordingly we expect these models to give the
same result for the contributions of the ππ-exchange TBF
to the 3N binding energy, and therefore we will consider
only model 1 in the following analysis. Furthermore, the
vertex function for model 2 is obviously harder than the
one resulting from model 2’ (for small and intermediate
momenta) - in contrast the form factors for model 2’ looks
harder (cf. Table 1). This seemingly paradoxical situation
has been discussed thoroughly in [14].

Before carrying out the actual three-nucleon calcula-
tions the meson-theoretical πN models have to be ex-
panded in separable form. This is necessitated by the spe-
cific structure of our three-nucleon code which can only
deal with interaction models given in separable form. For
this purpose we apply the so-called Ernst-Shakin-Thaler
(EST) method [15] which allows us to generate separa-
ble representations of arbitrary rank N that agree exactly
(on- and half-off-shell) with the original reaction matrix
at N specific predetermined energies.

Let us begin with the (partial wave projected)
Lippmann-Schwinger equation for the radial wave func-
tion

|ψE〉 = |kE〉+G0(E)V |ψE〉, (2)

where |kE〉 is the incoming wave and G0(E) the two-body
Green’s function. (In (2) and in the following the par-
tial wave index is suppressed for convenience.) For proper
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Fig. 4. πNN vertex functions as function of the pion mo-
mentum in the πN c.m. system. The solid (long-dashed) line
denotes the prediction resulting from model 1 (2) of [12],
the dash-dotted (short-dashed) line denotes the prediction of
model 1’ (2’) of [14], the dotted line shows the result of model
PJ of [3]

scattering solutions (on-shell) kE and E are related by

E =
√
m2
N + k2

E +
√
m2
π + k2

E . (3)

According to the EST method a rank-N separable repre-
sentation for the potential V is given by

Ṽ =
N∑

i,j=1

V |ψEi〉λij〈ψEj |V , (4)

where Ei, (i = 1, ..., N), are N freely chosen energies. The
coupling strengths λij are determined by the condition

N∑
j=1

λij〈ψEj |V |ψEk〉 = δik . (5)

It is evident from (4) that the ”form factors” of the sepa-
rable potential Ṽ [18] consist of the objects V |ψEi〉, where
|ψEi〉 are solutions of (2) for the potential V at the ener-
gies Ei. Therefore, by virtue of (5), the following relation
holds

Ṽ |ψEi〉 = V |ψEi〉 = T (Ei)|kEi〉 = T̃ (Ei)|kEi〉 (6)

at the N energies Ei, where T̃ is the solution of the
Lippmann-Schwinger equation (1) for the separable rep-
resentation Ṽ . This means that the on-shell as well as the
half-off-shell t-matrix for both interactions V and Ṽ are
exactly the same at the energies Ei.

In the present case the interaction models V are
energy-dependent and therefore a modification of this
scheme proposed by B. Pearce [19] is employed. According
to it the condition

〈ψEl |V (E)|ψEk〉 = 〈ψEl |Ṽ (E)|ψEk〉

=
N∑

i,j=1

〈ψEl |V (Ei)|ψEi〉λij(E)

· 〈ψEj |V (Ej)|ψEk〉 (7)

has to be used for determining the coupling strengths
λij(E) instead of (5). As expected also the separable rep-
resentation becomes now energy-dependent.

A special treatment is required for the P11 partial wave
which contains the (s-channel) nucleon pole. It must be
possible to clearly separate the contribution of this pole
term from the total P11 amplitude. Its contribution to
the three-nucleon binding energy is already taken into ac-
count by solving the standard bound-state Faddeev equa-
tions. Therefore, in order to avoid double counting, only
the non-pole part of the P11 must be considered in the
present investigation. Furthermore in the consistent ap-
proach of SA the πNN vertex function is extracted from
this pole term and is then used for the vertices where the
pions are emitted (absorbed) by (at) the outer nucleons.
Consequently a separable representation for the P11 par-
tial wave must guarantee that (a) the non-pole amplitude
is reliably reproduced and (b) the πNN vertex function
extracted from the pole term agrees exactly with the one
obtained for the original interaction model. This can be
achieved and we summarize details of the construction
procedure in the Appendix.

Of course if one relies on such separable representa-
tions one has to ensure that they incorporate all the rel-
evant properties of the original interaction models. From
extensive tests, we find that a rank-1 separable representa-
tion is sufficient for the present purpose provided that the
expansion energy is choosen in the relevant energy domain
(i. e. around the triton binding energy which corresponds
to a center-of-mass energy of roughly 930 MeV in the πN
system). Thus we have selected this particular energy for
the separable representation to be applied in the present
study. Since this energy is below the elastic πN threshold,
kE in (2) can no longer be fixed by the on-shell condition.
Following our previous work [20] we choose kE in such a
way that ikE fulfils (3). For E1 = 930 MeV this implies
kE1 ≈ 138 MeV/c.

The quality of the separable represention is demon-
strated in the Figs. 5 and 6 for model 2. Figure 5 shows
the off-shell transition amplitude Tα(q, q′;Z) for fixed off-
shell momenta q = q′ = 130 MeV as a function of the
total energy Z. Note that in case of the P11 partial wave
only the non-pole part of the t-matrix is shown since, as
explained above, this is the part relevant for the present
study. Figure 6 shows the transition amplitude Tα(q, q′;Z)
for fixed Z and q′ as a function of the other off-shell mo-
mentum. In the latter figure we display only results for
those partial waves that are expected to give the domi-
nant contribution of the ππ-exchange three-nucleon force
to the 3N binding energy [1], namely S31, P11, and P33.
We want to point out, however, that the agreement in the
other partial waves is of similar quality. Likewise we want
to refrain from displaying corresponding results for the
model 1 here since the quality of its separable represen-
tation is pretty much the same. Furthermore, we do not
show the πNN vertex functions resulting from the sepa-
rable representation because - by construction - they are
identical to the ones of the original model (cf. the Appen-
dix).
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Fig. 5. Off-shell πN transition amplitude Tα(q, q′;Z) for q =
q′ = 130 MeV/c as a function of the total energy Z. The full
line is the result of model 2’ of [14] whereas the dashed line
corresponds to the rank-1 separable representation described
in the text

Note that we have also constructed rank-1 separable
representations where the expansion energies are near the
πN threshold (E1 = 1077 MeV for S11; E1 = 1000 MeV
for S31; E1 = 1100 MeV for P11, P31, P13, P33). (In case
of the S31 partial wave the amplitude around 1077 MeV
has a peculiar energy dependence which would require, in
principle, a rank-2 representation. In order to avoid this
complication we have chosen a somewhat lower value for
E1.) These representations will be also employed in our
investigations. They will serve as a term of reference for
how strongly the resulting 3N binding energies depend on
the specific choice of the separable representation.

3 Formulation of the three-body force

In this section we formulate the TBF using the πN ampli-
tude and πNN vertex function which have been derived
in the previous section.

We follow the prescription by SA. The TBF is schemat-
ically shown in Fig. 7, i.e., (i) a pion is emitted from the
first nucleon, (ii) the pion is scattered off the second nu-
cleon, (iii) the pion is absorbed by the third nucleon. The

Fig. 6. Off-shell πN transition amplitude Tα(q, q′;Z) for q′ =
130 MeV/c at three different energies Z as a function of the
off-shell momentum q. Same description as in Fig. 5

strength function of pion emission and absorption is given
by the πNN vertex function which depends on the energy
of the πN system as explained in the previous section.
Also the πN amplitude corresponding to the scattering of
the pion on the second nucleon is energy dependent and
includes only the non-pole contribution in the P11 chan-
nel. We introduce Jacobi variables in the πNNN system
so that we can define the πN relative momenta and ener-
gies at the stages (i), (ii) and (iii).
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Fig. 7. Illustration of the three-body force. See the text for
the definitions of functions, momenta and energies

The momenta of the three nucleons before the three-
body interaction in Fig. 7 are given by k1, k2 and k3

and the momenta after the interaction are k′1, k′2 and k′3,
respectively. We define the relative momenta between the
third nucleon and the system of first and second nucleon
and pion (q3), between the second nucleon and the system
of first nucleon and pion (p3) and between the first nucleon
and pion (Q3) at the stage (i)

q3 = −k3, (8)

p3 =
mN (kπ + k′1)− (mN +mπ)k2

(2mN +mπ)
, (9)

Q3 =
mNkπ −mπk′1

(mN +mπ)
, (10)

where kπ is the pion momentum. Then the center-of-mass
energy in the system of first nucleon and pion, E3, is ob-
tained using those relative momenta

E3 = E +mN −
q2
3

2µ2
− p2

3

2µ1
(11)

where E = −ET is the total energy of the whole system
not including rest masses, and the reduced masses µ1 and
µ2 are defined, respectively, by the relations

1
µ1

=
1
mN

+
1

mN +mπ
, (12)

and
1
µ2

=
1
mN

+
1

2mN +mπ
. (13)

In the same way we define the relative momenta and ener-
gies of the system of second nucleon and pion, Q′3 (before
scattering), Q′1 (after scattering) and E2 at the stage (ii)
and Q1 and E1 of the system of third nucleon and pion
at the stage (iii), respectively.

Using these πN relative momenta and energies the
TBF, W (E), can be symbolically written as

W (E) = vRπN (Q1;E1) GπNNN (E) TπN (Q′1, Q
′
3;E2)

·GπNNN (E) vRπN (Q3;E3). (14)

Here, vRπN (Qi;Ei) (i = 1, 3) is the renormalized πNN ver-
tex function (cf. the Appendix) which gives the strength
of the pion emission and absorption on the nucleon.
GπNNN (E) is the propagator of the πNNN system and
TπN (Q′1, Q

′
3;E2) is the non-pole part of the πN scattering

amplitude. (14) represents how the pion is emitted from
the first nucleon, scattered off the second nucleon, and
then absorbed by the third nucleon. Note that the πN
amplitude and the πNN vertex function are determined
in the same framework, i. e. they are obtained from the
same πN interaction model. A detailed discussion of (14)
can be found in [2]. Since in the Jülich model the energy
is defined fully relativistic whereas a semi-relativistic form
is employed by SA, we have to change the πNNN prop-
agator of [2] to be

GπNNN (E) =
(
Ei −

√
Q2
i +m2

N −
√
Q2
i +m2

π

)−1

, (15)

with i = 1 or 3 (cf. (4.9) of [2]).

4 Results

The contribution of the TBF to the binding energy of the
three-nucleon system, ∆E(3), is calculated in first order
perturbation theory, i. e.

∆E(3) = 〈Ψ |W (−ET )|Ψ〉, (16)

where |Ψ〉 is the triton wave function. This wave function
is obtained from solving the Faddeev equations for the
so-called PEST potential [20,21] which is a separable rep-
resentation of the Paris NN potential [23] derived by the
EST method. All nucleon-nucleon partial waves with total
angular momentum less than or equal two are employed
in the calculation. The triton properties obtained by the
PEST potential are comparable with those by the original
Paris potential as shown in [22,2].

Evidently, like in the work by SA there is no consis-
tency between the NN interaction which is used to gen-
erate the triton wave function and the TBF. However, we
are making use of the Born approximation and therefore
the triton wave function and the TBF are obtained sepa-
rately, anyway. Thus, as argued already by SA [2], we do
not expect that this inconsistency has an influence on the
qualitative features of our results. One should also keep in
mind that a similar inconsistency is involved in standard
3N calculations employing the TM TBF.

The contributions of the TBF generated by the πN
models 1, 2 and 2’ of [14] to the 3N binding energy are
listed in Table 1. These results are based on the separa-
ble representations of the original interaction models de-
scribed in the preceeding section. Note that the value of
930 MeV is used for the expansion energy since we expect
the average πN energy in the three-nucleon system to be
near this value. In Table 1 also the result for model PJ of
[2] is listed for the sake of comparison. Thus, it is easy to
see that our results are qualitatively very similar to those
of SA. Again the contibutions of the individual πN partial
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Table 1. The contribution of the ππ-exchange three-body
force to the triton binding energy in keV for the πN mod-
els 1, 2 and 2’ of the Jülich group [12,14] and PJ of [2]. The
πNN form factor FπNN (q2 = 0) determined consistenly from
these models is given in the second line

model 1’ model 2 model 2’ PJ
FπNN (0) 0.934 0.925 0.962 0.811

S11 -3.8 -2.8 -2.3 -4.8
S31 35.1 64.4 51.7 26.4
P11 -11.8 -26.4 -21.3 -8.8
P31 1.8 9.0 6.4 -3.6
P13 -2.2 -0.9 -1.1 4.5
P33 -17.1 -31.6 -24.2 -16.0

Total 2.0 11.7 9.2 -2.3

waves to the 3N binding energy are very small (only in
the order of keV ) and there is again a strong cancellation
between the attractive P11 and P33 partial waves and the
repulsive S31 partial wave.

In [7] Murphy and Coon have presented a thorough
comparison of the πN amplitudes used in the TM and
Brazilian TBF and the one applied in the calculations
by SA. Their main conclusion was that the two-orders-
of-magnitude smaller value for the binding energy result-
ing from the ππ-exchange TBF based upon the separable
models of SA is most likely due to the very soft form factor
resulting from these potentials. Therefore we want to look
now at the πN form factors extracted from the models
applied in the present study. The values for FπNN (0) are
also given in Table 1. Note that model 2’ yields the hardest
πNN form factor which corresponds to a monopole form
factor with a cutoff mass of about 708 MeV whereas the
model PJ of SA corresponds to a monopole form factor
with a cutoff mass of just 317 MeV. From comparing dif-
ferent columns of Table 1 one might conclude that there
is some influence of the form factor on the magnitude of
the TBF. However, the variations in the individual partial
wave contributions are only around a factor of two or three
and definitely not two orders of magnitude. Furthermore,
the cancellation effects are independent of the softness of
the πNN form factor and they tend to reduce the varia-
tions in the total contribution. In fact, the results for the
πN models considered in the present paper lie all within
a range of 15 keV , as can be seen from Table 1.

At this point one may wonder how reliable results
based on a rank 1 separable approximation of the Jülich
models are. In order to estimate the uncertainty due to
the simplicity of the representation we constructed an-
other rank 1 represention where the expansion energy was
chosen at πN threshold (for the S-waves) or slightly above.
Specifically we chose 1077 MeV for S11, 1000 MeV for S31

and 1100 MeV for the other partial waves. The results for
these alternative separable representations are compared
with the ones obtained for our ’standard’ choice in Ta-
ble 2. From this Table we see that there are variations of
the order of 20 ∼ 30% in some partial waves - but qual-
itatively there is no change in the results. Therefore we

Table 2. The effect of choosing different expansion energies
for the rank-1 separable representation in the EST expansion.
Columns labelled with Ei < Eth correspond to our standard
choice of Ei = 930 MeV. The results given in the columns
labelled with Ei > Eth are obtained for the value of 1077 MeV
for S11, 1000 MeV for S31 and 1100 MeV for the other partial
waves. All binding energies are given in keV

model 1 model 2’
Ei > Eth Ei < Eth Ei > Eth Ei < Eth

S11 -5.4 -3.8 -5.5 -2.3
S31 37.5 35.1 59.0 51.7
P11 -11.8 -11.8 -20.6 -21.3
P31 -1.0 1.8 0.3 6.4
P13 -2.1 -2.2 -1.5 -1.1
P33 -14.7 -17.1 -20.5 -24.2

Total 2.5 2.0 11.2 9.2

are confident that the used rank-1 separable representa-
tions are sufficiently accurate for the aim of the present
investigation.

5 Discussion

We conclude from the previous section that the softness of
the πNN form factor is not responsible for the smallness
of the ππ-exchange TBF based on πN potential models. If
so, what makes the contribution to the three-body binding
energy so small? In order to shed some light on this let us
examine the basic two differences between the TM TBF
and the one derived from a πN potential model. The first
difference concerns the energy dependence. The original
πN amplitude on which the TM TBF is based, is given in
a covariant form and therefore depends on the energy (of
the pion). However, in order to make this TBF suitable
for application in standard (non-relativistic) 3N calcula-
tions the πN amplitude is expanded in powers of kπ/mN

and only the lowest order terms are kept. As a consequene
the initial energy dependence drops completely out of the
resulting TBF. In the approach of SA the TBF is energy
dependent in a two-fold way, namely via the πN amplitude
but also via the πNN form factor. The effect of switching
off this energy dependence in the TBF has been analyzed
thoroughly in [1,2] where it was found that it leads to a
sizeable increase in the resulting binding energy. However,
it was concluded by SA that the approximation of fixing
the energy in the πN amplitude and the πNN form factor
does not lead to a sufficiently large change in the contri-
butions to make them comparable with the result for the
TM TBF. None the less we would like to look at this point
again because (unlike the potentials employed by SA) now
the πN interaction model itself is energy dependent and
therefore the effects from the energy dependence might be
stronger. Note that in the present case the energy depen-
dence of the TBF enters at three levels: (a) the energy
dependence of the πN potential itself; (b) the energy de-
pendence of the πN t-matrix; (c) the energy dependence
of the πNN vertex function.
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Table 3. The effect of removing the energy dependence in the
πN potential (i), and in addition in the πNN vertex function
and the πN ampliude (ii). All results are obtained by using
model 2’. The binding energies are in keV

exact (i) (ii)

S11 -2.3 -3.4 -3.9
S31 51.7 76.5 74.7
P11 -21.3 -33.1 -39.9
P31 6.4 13.7 14.4
P13 -1.1 0.9 1.1
P33 -24.2 -41.9 -45.7

Total 9.2 12.7 -0.7

We investigate the role of the energy dependence by
fixing the energy at E = 930 MeV. This is the value cho-
sen for constructing the separable interaction via the EST
method and, accordingly, where the πN amplitudes gener-
ated by the Jülich model and its separable representation
agree almost exactly. Thus, the results for our rank-1 sep-
arable interaction should be practically identical to the
one for the original Jülich model in the particular case
where the whole energy dependence (a)-(c) is fixed. Cor-
responding values are given in the last column of Table 3.
The numbers in the third column of Table 3 are obtained
by fixing only the energy dependence of the πN interac-
tion. For the ease of comparison results without restricting
the energy dependence are also shown in the Table. We
see that the contribution of each πN partial wave is en-
hanced by about 50% after fixing the energy dependence
of the potential. Fixing the energy dependence also in the
πN t-matrix and the πNN form factor leads to a further
increase in the contributions from the P11 and P33 waves
and to a slight suppression in the S31. However, those
approximations definitely do not provide any really sub-
stantial enhancement of the resulting triton binding - in
line with the findings of SA. All results shown in Table 3
are obtained by using model 2’. The other models behave
qualitatively very similar and therefore we don’t give the
corresponding numbers here.

The other major difference between the TM force and
the TBF based on a πN potential concerns the off-shell ex-
trapolation of the πN amplitude. In the Jülich model the
off-shell properties of the πN amplitude are completely de-
termined by the dynamical ingredients of the πN model
and the fit to the πN data. Since also for the potential
models employed by SA the off-shell properties are, in
principle, constrained by a fit to πN data let us emphasize
the main difference here. In case of phenomenological sep-
arable interactions the off-shell behavior is, to a large ex-
tend, determined by the specific choice of the form-factor
function. Moreover, separable interactions act only in sin-
gle partial waves and accordingly the free parameters are
determined by fitting only a single partial wave. On the
other hand, in a meson-exchange potential like the Jülich
model the dynamical ingredients give, in general, contribu-
tions to all partial waves and therefore the free parameters
in this model - which are essentially the cutoff masses in

the (baryon-baryon-meson) vertex form factors [12] - are
much better constrained by a fit to the πN data. Clearly
also here differences in the dynamics and/or differences in
the parametrization of the vertex form factors will lead to
variations in the off-shell properties of the resulting πN
amplitude. Indeed such differences exist between the mod-
els 1 and 2 (or 2’) considered here. But, as we have already
seen in the last section, they to not lead to any significant
variations in the results for the TBF.

The πN amplitude used in the TM force is given by
(cf., e.g., [7,25])

T ijπN (kπ,k′π) = FπNN (k2
π)FπNN (k′2π )

· {δij [a+ b kπ · k′π + c (k2
π + k′2π )]

−d εijkτkσ · kπ × k′π} , (17)

where i, j are pion (cartesian) indices, kπ and k′π are the
momenta of the incoming and outgoing (off-shell) pions,
and a, b, c, and d are constants defined, e.g., in [25]. Evi-
dently the off-shell extrapolation is provided by the form
factor function FπNN [24]. In the standard version of the
TM force this form factors are assumed to be of monopole
type,

FπNN (k2
π) =

Λ2
π −m2

π

Λ2
π + k2

π

, (18)

with a cutoff mass Λπ = 5.8mπ ≈ 800 MeV. We would
like to emphasize at this point that, in principle, there is
no connection between the πNN vertex (with an off-shell
pion) and the πN amplitude entering into the TBF. It
would appear only in the contribution of the direct nu-
cleon pole diagram to the πN amplitude, which, however,
is omitted in order to avoid double counting (cf. the discus-
sion in Sect. 2). Therefore the prescription for the off-shell
extrapolation used in the TM force must be considered as
rather arbitrary.

In the discussion above we have tacitly ignored a con-
ceptional subtlety when we talk about ”off-shell”. In case
of the Jülich model the πN amplitude is obtained off-
energy-shell, while an off-mass-shell πN amplitude is used
in the TM potential. This means, that we can not make a
simple comparison between them. The off-pion-mass-shell
πN amplitude of the TM force depends on the pion mo-
menta kπ and k′π. The off-energy-shell value of the πN
amplitude for the potential model (at a certain energy) is
given as a function of the relative momentum between the
pion and the nucleon, Q. Within non-relativistic kinemat-
ics Q is obtained by (cf. (10))

Q =
kπ − mπ

mN
kN

1 + mπ
mN

, (19)

where kN is the nucleon momentum. One can see from
this relation that Q becomes equivalent to kπ only in the
limit of mπ/mN → 0.

In the following we want to discuss the off-shell prop-
erties entering into the calculations with the TM force
and into the results presented in this paper. In view of
the aforementioned difficulties it should be clear that any
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Fig. 8. Comparison of the monopole type function F (q) =
Λ2/(Λ2 + q2) with Λ = 800 MeV with the off-energy shell
behaviour of our model 2’ for various πN partial waves. fα(q)
is defined in (20)

comparision can be only of qualitative nature. None the
less, as we will see below such an analysis is useful and we
believe that it indicates the source of the large discrepancy
found in the contributions to the binding energy from the
two approaches.

For this purpose let us introduce a half-off-shell func-
tion in the following way,

fα(Q) =
Tα(Q,Q′;Z)

Ql
(20)

where Tα(Q,Q′;Z) is the off-shell πN t-matrix (projected
on the partial wave α with angular momentum l) at a
fixed energy Z and a fixed momentum Q′. The factor Ql
is taken out for convenience because then we can normalize
these half-off-shell functions to 1 at Q = 0 for s- as well
p-waves and we can easily compare them with each other.
Corresponding results for the Jülich πN potential 2’ are
shown in Fig. 8, where Z and Q′ in (20) have been fixed
to 930 MeV and 130 MeV/c, respectively.

Let us first take a look at the p-waves and in partic-
ular at the P11 and P33 partial waves which provide the
main attractive contributions to the TBF (cf. Table 1).
In this case the momentum dependence of the TM πN

amplitudes is roughly given by a monopole type function
F (Q2) = Λ2/(Λ2 + Q2) with Λ = 800 MeV, cf. (17-18),
which is shown by the dashed curve in Fig. 8. We ob-
serve that the corresponding half-off-shell functions of the
Jülich πN model fall off much faster with increasing (off-
shell) momentum than this function. Accordingly we ex-
pect that a TBF based on the potential model will yield
a much smaller attractive contribution to the three-body
binding than one with off-shell properties similar to the
monopole type function.

In case of the s-waves we get large repulsive contri-
butions from the S31 partial waves and small attractive
contributions from S11 (cf. Table 1). Please note that also
the corresponding half-off-shell functions are radically dif-
ferent. The one for S31 exhibits a strong enhancement
whereas the one for S11 falls off very strongly with in-
creasing (off-shell) momentum. The s-wave part of the
TM force (a- and c-terms), on the other hand, has no
isospin dependence, cf. (17). This means that here the S31

and S11 partial waves have exactly the same momentum
dependence. Therefore we suspect that a strong cancel-
lation between the contributions from those two s-waves
takes place. Indeed, actual triton calculations employing
the TM force confirm that the total s-wave contributions
are comparably small [26]. Evidently, such a cancellation
does not occur with the TBF based on the Jülich πN
model because of the differences in the off-shell proper-
ties. As a consequence, the (large) repulsive contribution
of the S31 partial wave to the three-body binding survives
(cf. Table 1).

Summarizing this phenomenological discussion of the
off-shell properties we expect that a calculation based on
the off-shell extrapolation used in the TM force should
lead to a strong enhancement of the attractive contribu-
tions and at the same time reduce the repulsive contribu-
tions. We believe that this is the basic mechanism which
makes the binding energy obtained with the TM TBF so
large. We would like to substantiate this claim quantita-
tively with a model calculation. We can do this by substi-
tuting the off-shell properties of our πN model by the ones
used in the TM force. This can be easily done for the sep-
arable representations that we are using. We only need to
replace the Jülich off-shell behavior by defining the form
factor of the separable potential, gα(Q) := 〈Q|Vα|ψE1〉, as
follows:

gα(Q)→
(

lim
Q→0

gα(Q)
Ql

)
Ql

1 +Q2/Λ2
. (21)

Furthermore we fix the energy dependence in the πN am-
plitude and the πNN vertex function again.

We demonstrate the effect on the binding energy for
several values of Λ in Table 4. From this Table it is clear
that we can get a substantial increase in the triton bind-
ing energy by choosing Λ ≈ 600 ∼ 800 MeV. Specifically
one can see that the repulsion of the S31 partial wave is
suppressed and, moreover, cancels to a large extent with
the S11. At the same time the attraction provided by the
P11 and P33 partial waves is strongly enhanced - as we
expected from analyzing Fig. 8. In fact, if we take into
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Table 4. The effect of replacing the off-shell properties of our
πN amplitude by monopole type functions (cf. 21) with differ-
ent cutoff masses Λ. Starting point is model 2’. The binding
energies are in keV

Λ(MeV ) 200 400 600 800

S11 -0.7 -4.8 -8.6 -11.0
S31 0.4 7.0 13.4 17.5
P11 -7.1 -28.5 -63.6 -100.2
P31 -2.1 3.2 12.4 19.6
P13 -1.1 1.1 5.6 9.3
P33 -0.5 -48.7 -129.7 -202.7

Total -11.1 -70.7 -170.5 -267.5

account that our results are based on first-order perturba-
tion theory and therefore may underestimate the correct
values by a factor two or even three [25] then our simula-
tion with the choice Λ = 800 MeV practically reproduces
the TM result, which is likewise based on Λπ = 800 MeV.

6 Summary

In the present paper we have re-investigated the origin
of the large discrepancy in the contribution of a ππ-
exchange TBF found by Saito and Afnan to the commenly
accepted values obtained with the Tucson-Melbourne or
Brazil TBF. Unlike SA, who employed phenomenologi-
cal separable potentials, we started out from a meson-
theoretical πN interaction model developed recently by
the Jülich group. This model provides a good description
of elastic πN scattering data. It is also in agreement with
empirical information on the πN amplitude in the sub-
threshold region. In particular, it predicts the πN Σ term
close to the empirical value. Furthermore, the decrease in
the πNN form factors FπNN (q2) from q2 = m2

π to q2 = 0
of about 4-7% and is comparable to that of the TM po-
tential. Thus the form factors are much harder than those
used by SA (which show a decrease of up to 20 %). Ac-
cordingly, the Jülich πN model does not show the defi-
ciencies which, so far, have been thought to be the main
reason for the small contribution of the ππ-exchange TBF
in SA’s work.

None the less it turned out that also the ππ-exchange
TBF based on the πN amplitude of the Jülich model is
very small. The contributions to the triton binding energy
are in the order of a few keV , which means comparable to
the results obtained by Saito and Afnan.

A detailed analysis of the main differences between the
TM TBF and that derived from the Jülich πN potential
model suggests that the differences in the contribution of
the TBF to the 3N binding energy is due to the off-shell
behaviour of the non-pole πN amplitude. In the Jülich
model the off-shell properties of the πN amplitude are de-
termined by the dynamical ingredients of the model and
the fit to the πN data. As a result, the off-shell properties
of the amplitude are different in the individual πN partial
waves. In particular, the πN amplitudes that provide at-
tractive contributions to the three-body binding (P11, P33)

fall off relatively fast with increasing off-shell momentum
while the repulsive S31 partial wave is enhanced. As a con-
sequence, the total contribution of the TBF is very small
as a result of the cancellation effects. On the other hand,
in the πN amplitude underlying the TM TBF, the off-
shell extrapolation is done in terms of a monopole form
factor with a cut-off mass of 800 MeV for all partial waves.
Since this monopole form factor falls off much slower then
the P11 and P33 amplitudes of the Jülich πN model, the
corresponding attraction provided by the TM force is con-
siderably enhanced. At the same time, the repulsion in the
S31 partial wave (and therefore any cancellation effects) is
strongly suppressed. These combined effects do indeed ex-
plain the two-orders-of-magnitude discrepancy in the re-
sulting contribution to the triton binding energy as we
have demonstrated in a numerical model study.

Naturally the question arises how realistic and well-
defined the off-shell properties of the Jülich πN model
are, especially in view of the so-called quasi-potential am-
biguity [27]. This is a topic which needs to be further
investigated in the future, but it is certainly beyond the
scope of the present paper. Here we only want to point to
the fact that rather different ansatzes for the πN interac-
tion (meson-exchange and simple separable forms, respec-
tively) lead to qualitatively similar off-shell features and,
in consequence, to similar results for the TBF. Qualita-
tively similar off-shell properties seem to be also predicted
by other πN models - at least as far as we can judge from
corresponding publications [28,29].

With regard to the off-shell extrapolation used in the
πN amplitude on which the TM TBF is based the situ-
ation is, in our opinion, much less clear. First of all, we
do not see any stringent physical reason for adopting the
πNN form factor for this purpose, especially because no
πNN vertex is present at all in the non-nucleon-pole part
of the πN amplitude that enters into the derivation of the
TBF. Furthermore, the choice of having the same off-shell
properties in all πN partial waves is also hard to justify.
Therefore the large contribution of the TM (and also the
Brazil) TBF to the triton binding energy of around 1 MeV
- though certainly desired by phenomenology - must be in-
terpreted with caution.
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sions and for a careful reading of the manuscript. We acknowl-
edge the hospitality of the RCNP in Osaka, Japan, where most
of the numerical calculations were carried out. This work was
financially supported by the Deutsche Forschungsgemeinschaft
(Grant no. 447 AUS-113/3/0) and by the Japanese Society for
the Promotion of Science.

Appendix:
Separable expansion of a potential with two
terms

We consider to represent a potential V which consists of
two terms, V = V1 + V2, in separable form. At first we
expand V2 by means of the standard EST-method, cf. (2)
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to (6). Then the t-matrix T̃2(E) obtained from the separa-
ble representation Ṽ2 agrees (on- as well as half-off-shell)
with T2(E) corresponding to V2 at the choosen expansion
energies E = Ei, i = 1, ..., N .

Next we expand the potential V by assuming the fol-
lowing form

Ṽ (E) = |ṽ0〉λ1(E)〈ṽ0|+ Ṽ2. (22)

We determine the ”form factor” |ṽ0〉 in such a way that
Ṽ satisfies

V |ψε〉 = Ṽ (ε)|ψε〉, (23)

where |ψε〉 is a solution of the scattering equation,

|ψε〉 = |kε〉+G0(ε)V |ψε〉, (24)

at a fixed predetermined energy ε. We want to emphasize
that we may choose the energy ε at which the potential
V is expanded to be different from any of the energies Ei
chosen for the separable expansion of V2 . We see easily
that (23) is satisfied if we choose |ṽ0〉 to be

|ṽ0〉 = (V − Ṽ2) |ψε〉, (25)

and λ1(ε) to be

λ1(ε) =
1

〈ψε|V − Ṽ2|ψε〉
(26)

=
1

〈ṽ0|ψε〉
(27)

Note that the (half-off-shell) t-matrix T̃ (E) obtained
from Ṽ (ε) is identical to T (E) obtained from V at E = ε
because of condition (23).

If T (E) has a pole at Ep we may choose the expansion
energy ε for the separable representation to be ε = Ep.
The wave function at the pole, |ψp〉, is a solution of the
equation

|ψp〉 = G0(Ep)V |ψp〉 . (28)

The t-matrix T̃ (E) for the separable potential Ṽ (E) is
given by

T̃ (E) = |ṽ(E)〉 1
1/λ1(E)− Σ̃(E)

〈ṽ(E)|+ T̃2(E) , (29)

where
Σ̃(E) = 〈ṽ0 |G0(E) | ṽ(E)〉, (30)

and
|ṽ(E)〉 = (1 + T̃2(E)G0(E)) |ṽ0〉 . (31)

The ”form factor” |ṽ0〉 is defined by

|ṽ0〉 = (V − Ṽ2) |ψp〉. (32)

Substituting (31) and (32) into (30) leads to

Σ̃(E)=〈ṽ0|(1+G0(E)T̃2(E))G0(E)V −G0(E)T̃2(E)|ψp〉.
(33)

We can evaluate Σ̃(E) at E = Ep by using (28),

Σ̃(Ep) = 〈f̃0|ψp〉

=
1

λ1(Ep)
, (34)

where we have utilized, in addition, (27). By substitut-
ing this result into (29), we see that the t-matrix T̃ (E)
obtained for the separable potential Ṽ has the same pole
position as the t-matrix of the original potential V .

Let us now assume that the first term of the original
potential V has a separable form,

V1(E) = |v0〉Λ(E)〈v0|, (35)

where Λ(E) is

Λ(E) =
1

E −m0
. (36)

This is exactly the case for the (direct) nucleon pole contri-
bution, Fig. 2(a). Then |v0〉 corresponds to the bare πNN
vertex function and m0 is the bare nucleon mass. The solu-
tion of the Lippmann-Schwinger equation for V = V1 +V2

can then be written as

T (E) = |v(E)〉 1
1/Λ(E)−Σ(E)

〈v(E)|+ T2(E), (37)

where T2(E) is a solution of the scattering equation for
the potential V2. The self-energy Σ(E) is given by

Σ(E) = 〈v0|G0(E)|v(E)〉, (38)

and the dressed πNN vertex function, |v(E)〉, by

|v(E)〉 = (1 + T2(E)G0(E)) |v0〉. (39)

Assuming that the t-matrix of (37) has a pole at E = mN ,
Σ(mN ) is evaluated as

Σ(mN ) =
1

Λ(mN )
= mN −m0 . (40)

Also, the pole part of the t-matrix can be written in the
form,

T (E) = |v(E)〉 1
1/Λ(E)−Σ(E)

〈v(E)|

= |vR(E)〉 1
E −mN

〈vR(E)| , (41)

which defines the renormalized πNN vertex function
|vR(E)〉. At the pole |vR(E)〉 is given by (cf., e.g., [2])

|vR(mN )〉 =
|v(mN )〉

(1−Σ′(mN ))1/2
, (42)

where

Σ′(mN ) = −〈v(mN )|G2
0(mN )|v(mN )〉 . (43)
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In the last step we have assumed that V2 does not depen-
dent on the energy E. If it does (like in our case) then Σ′
is determined by

Σ′(mN ) =
∂

∂E
〈v0|G0(E)|v(E)〉 |E=mN . (44)

Furthermore, we note that the renormalized vertex func-
tion is related to the πNN coupling constant fπNN and
the πNN form factor FπNN by

fπNNFπNN (q2)a(q) = 〈q|vR(mN )〉 . (45)

where a(q) is a kinematical factor depending on the par-
ticular (ps or pv) πNN coupling (cf. (3) and (16) of [14]).

The wave function at the pole energy is obtained by
solving (28)

|ψp〉 = G0(mN ) |v(mN )〉. (46)

By substituing (46) into the lhs of (28), we get another
relation between |v(mN )〉 and |ψp〉,

|v(mN )〉 = V (mN )|ψp〉. (47)

Now we expand the potential model V (E) using the
method described above. Then the resulting t-matrix ob-
tained from the separable representation has the same pole
position as the original interaction model. We will examine
whether also the πNN coupling constant and form factor
determined from the separable representation agree with
the ones of the original interaction.

At first, we derive a relation between |ṽ(mN )〉 and
|v(mN )〉. Using (31), (32), and finally (47) we obtain

|ṽ(mN )〉 = (1 + T̃2(mN )G0(mN ))(V (mN )− Ṽ2)|ψp〉
= V (mN )|ψp〉
= |v(mN )〉. (48)

(48) implies that the momentum dependence of the πNN
vertex function obtained from the separable representa-
tion is identical to the one of the original potential.

The renormalized πNN vertex function at the pole,
|ṽR(mN )〉, for the separable representation Ṽ can be cal-
culated in the same way as for the original potential. It is
obtained by placing tildes over all quantities in (42) and
(43):

|ṽR(mN )〉 =
|ṽ(mN )〉

(1− Σ̃′(mN ))1/2
, (49)

Σ̃′(mN ) = −〈ṽ(mN )|G2
0(mN )|ṽ(mN )〉. (50)

Because of (48) we get

Σ̃′(mN ) = Σ′(mN ) . (51)

Finally, by substituting (48) and (51) into (49) it follows
that

|ṽR(mN )〉 = |vR(mN )〉 , (52)

and consequently that f̃πNN = fπNN and F̃πNN (q2) =
FπNN (q2).

In the above discussion we have not specified the form
of λ1(E), since we needed only the value of λ1(E) at the
energy E = mN to get the correct half-off shell t-matrix.
If we assume λ1(E) to be of the form 1/λ1(E) = E − m̃0,
then m̃0 can be determined by (27) (or (34)) to be

m̃0 = mN − 〈ψp|V − Ṽ2|ψp〉. (53)

Therefore, by following the outlined procedure it is
possible to construct a separable representation where (i)
the half-off-shell behavior of the non-pole part of the t-
matrix (at selected energies), (ii) the pole position, (iii)
the πNN form factor, and (iv) the value of the πNN cou-
pling constant are the same as in the original interaction
model.
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12. C. Schütz, J. W. Durso, K. Holinde, and J. Speth, Phys.
Rev. C 49, 2671 (1994)

13. C. Hanhart, J. Haidenbauer, M. Hoffmann, U.-G. Meißner,
and J. Speth, Phys. Lett. B 424, 8 (1998)
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